Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; : e0051623, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647290

RESUMO

The intestinal microbiome harbors fungi that pose a significant risk to human health as opportunistic pathogens and drivers of inflammation. Inflammatory and autoimmune diseases are associated with dysbiotic fungal communities and the expansion of potentially pathogenic fungi. The gut is also the main reservoir for disseminated fungal infections. Immune interactions are critical for preventing commensal fungi from becoming pathogenic. Significant strides have been made in defining innate and adaptive immune pathways that regulate intestinal fungi, and these discoveries have coincided with advancements in our understanding of the fungal molecular pathways and effectors involved in both commensal colonization and pathogenesis within the gut. In this review, we will discuss immune interactions important for regulating commensal fungi, with a focus on how specific cell types and effectors interact with fungi to limit their colonization or pathogenic potential. This will include how innate and adaptive immune pathways target fungi and orchestrate antifungal immune responses, in addition to how secreted immune effectors, such as mucus and antimicrobial peptides, regulate fungal colonization and inhibit pathogenic potential. These immune interactions will be framed around our current understanding of the fungal effectors and pathways regulating colonization and pathogenesis within this niche. Finally, we highlight important unexplored mechanisms by which the immune system regulates commensal fungi in the gut.

2.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38293128

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we show that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumors inhibits tumor growth compared to control. Multiplex cytokine analyses show that tumors from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting an association between eosinophil recruitment and tumor inhibition. In a human peripheral leukocyte co-culture model, we show that leukocytes stimulated with MAIT ligand show an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we show that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.

3.
Emerg Infect Dis ; 29(9): 1864-1867, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487168

RESUMO

A Vibrio cholerae O1 outbreak emerged in Haiti in October 2022 after years of cholera absence. In samples from a 2021 serosurvey, we found lower circulating antibodies against V. cholerae lipopolysaccharide in children <5 years of age and no vibriocidal antibodies, suggesting high susceptibility to cholera, especially among young children.


Assuntos
Cólera , Vibrio cholerae O1 , Criança , Humanos , Pré-Escolar , Cólera/epidemiologia , Haiti/epidemiologia , Anticorpos Antibacterianos , Vibrio cholerae O1/genética , Surtos de Doenças
4.
medRxiv ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36798289

RESUMO

After three years with no confirmed cholera cases in Haiti, an outbreak of Vibrio cholerae O1 emerged in October 2022. Levels of pre-existing antibodies provide an estimate of prior immunologic exposure, reveal potentially relevant immune responses, and set a baseline for future serosurveillance. We analyzed dried blood spots collected in 2021 from a population-weighted representative cross-sectional serosurvey in two communes in the Ouest Department of Haiti. We found lower levels of circulating IgG and IgA antibodies against V. cholerae lipopolysaccharide (LPS, IgG and IgA p<0.0001) in those below 5 years of age compared to those five years and older. Among a subset of patients with higher titers of antibodies, we were unable to detect any functional (vibriocidal) antibodies. In conclusion, the lack of detectable functional antibodies, and age-discordant levels of V. cholerae LPS IgG, suggest that populations in Haiti may be highly susceptible to cholera disease, especially among young children.

5.
Pathog Immun ; 7(1): 122-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072570

RESUMO

Background: Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in the mucosa with capacity for B-cell help. We hypothesize that targeting MAIT cells, using a MAIT-activating ligand as an adjuvant, could improve mucosal vaccine responses to bacterial pathogens such as Vibrio cholerae. Methods: We utilized murine models of V. cholerae vaccination to test the adjuvant potential of the MAIT-activating ligand, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU). We measured V. cholerae-specific antibody and antibody-secreting cell responses and used flow cytometry to examine MAIT-cell and B-cell phenotype, in blood, bronchoalveolar lavage fluid (BALF), and mucosal tissues, following intranasal vaccination with live V. cholerae O1 or a V. cholerae O1 polysaccharide conjugate vaccine. Results: We report significant expansion of MAIT cells in the lungs (P < 0.001) and BALF (P < 0.001) of 5-OP-RU treated mice, and higher mucosal (BALF, P = 0.045) but not systemic (serum, P = 0.21) V. cholerae O-specific-polysaccharide IgG responses in our conjugate vaccine model when adjuvanted with low-dose 5-OP-RU. In contrast, despite significant MAIT cell expansion, no significant differences in V. cholerae-specific humoral responses were found in our live V. cholerae vaccination model. Conclusions: Using a murine model, we demonstrate the potential, as well as the limitations, of targeting MAIT cells to improve antibody responses to mucosal cholera vaccines. Our study highlights the need for future research optimizing MAIT-cell targeting for improving mucosal vaccines.

7.
PLoS Negl Trop Dis ; 16(5): e0010411, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551522

RESUMO

Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes with a semi-conserved TCRα, activated by the presentation of vitamin B metabolites by the MHC-I related protein, MR1, and with diverse innate and adaptive effector functions. The role of MAIT cells in acute intestinal infections, especially at the mucosal level, is not well known. Here, we analyzed the presence and phenotype of MAIT cells in duodenal biopsies and paired peripheral blood samples, in patients during and after culture-confirmed Vibrio cholerae O1 infection. Immunohistochemical staining of duodenal biopsies from cholera patients (n = 5, median age 32 years, range 26-44, 1 female) identified MAIT cells in the lamina propria of the crypts, but not the villi. By flow cytometry (n = 10, median age 31 years, range 23-36, 1 female), we showed that duodenal MAIT cells are more activated than peripheral MAIT cells (p < 0.01 across time points), although there were no significant differences between duodenal MAIT cells at day 2 and day 30. We found fecal markers of intestinal permeability and inflammation to be correlated with the loss of duodenal (but not peripheral) MAIT cells, and single-cell sequencing revealed differing T cell receptor usage between the duodenal and peripheral blood MAIT cells. In this preliminary report limited by a small sample size, we show that MAIT cells are present in the lamina propria of the duodenum during V. cholerae infection, and more activated than those in the blood. Future work into the trafficking and tissue-resident function of MAIT cells is warranted.


Assuntos
Cólera , Células T Invariantes Associadas à Mucosa , Vibrio cholerae O1 , Duodeno , Feminino , Humanos , Mucosa Intestinal
8.
Sci Immunol ; 7(67): eabe8931, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35030034

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate-like T lymphocytes that aid in protection against bacterial pathogens at mucosal surfaces through the release of inflammatory cytokines and cytotoxic molecules. Recent evidence suggests that MAIT cells can also provide B cell help. In this study, we describe a population of CXCR5+ T follicular helper (Tfh)­like MAIT cells (MAITfh) that have the capacity to provide B cell help within mucosal lymphoid organs. MAITfh cells are preferentially located near germinal centers in human tonsils and express the classical Tfh-associated transcription factor, B cell lymphoma 6 (BCL-6), the costimulatory markers inducible T cell costimulatory (ICOS) and programmed death receptor 1 (PD-1), and interleukin-21 (IL-21). We demonstrate the ability of MAIT cells to provide B cell help in vivo after mucosal challenge with Vibrio cholerae. Specifically, we show that adoptive transfer of MAIT cells into αß T cell­deficient mice promoted B cell differentiation and increased serum V. cholerae­specific IgA responses. Our data demonstrate the capacity of MAIT cells to participate in adaptive immune responses and suggest that MAIT cells may be potential targets for mucosal vaccines.


Assuntos
Anticorpos/imunologia , Linfócitos B/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Mucosa/imunologia , Adolescente , Adulto , Animais , Formação de Anticorpos/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mucosa/microbiologia , Vibrio cholerae/imunologia
9.
Trop Med Infect Dis ; 6(4)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34842841

RESUMO

Vibrio cholerae O1, the major causative agent of cholera, remains a significant public health threat. Although there are available vaccines for cholera, the protection provided by killed whole-cell cholera vaccines in young children is poor. An obstacle to the development of improved cholera vaccines is the need for a better understanding of the primary mechanisms of cholera immunity and identification of improved correlates of protection. Considerable progress has been made over the last decade in understanding the adaptive and innate immune responses to cholera disease as well as V. cholerae infection. This review will assess what is currently known about the systemic, mucosal, memory, and innate immune responses to clinical cholera, as well as recent advances in our understanding of the mechanisms and correlates of protection against V. cholerae O1 infection.

10.
Open Forum Infect Dis ; 8(6): ofab237, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189172

RESUMO

BACKGROUND: Pneumonia and diarrhea are among the leading causes of death worldwide, and epidemiological studies have demonstrated that diarrhea is associated with an increased risk of subsequent pneumonia. Our aim was to determine the impact of intestinal infection on innate immune responses in the lung. METHODS: Using a mouse model of intestinal infection by Salmonella enterica serovar Typhimurium (S. Typhimurium [ST]), we investigated associations between gastrointestinal infections and lung innate immune responses to bacterial (Klebsiella pneumoniae) challenge. RESULTS: We found alterations in frequencies of innate immune cells in the lungs of intestinally infected mice compared with uninfected mice. On subsequent challenge with K. pneumoniae, we found that mice with prior intestinal infection have higher lung bacterial burden and inflammation, increased neutrophil margination, and neutrophil extracellular traps, but lower overall numbers of neutrophils, compared with mice without prior intestinal infection. Total numbers of dendritic cells, innate-like T cells, and natural killer cells were not different between mice with and without prior intestinal infection. CONCLUSIONS: Together, these results suggest that intestinal infection impacts lung innate immune responses, most notably neutrophil characteristics, potentially resulting in increased susceptibility to secondary pneumonia.

11.
Elife ; 92020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33164745

RESUMO

Sepsis is a systemic inflammatory response to infection and a leading cause of death. Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in mucosal tissues that recognize bacterial ligands. We investigated MAIT cells during clinical and experimental sepsis, and their contribution to host responses. In experimental sepsis, MAIT-deficient mice had significantly increased mortality and bacterial load, and reduced tissue-specific cytokine responses. MAIT cells of WT mice expressed lower levels of IFN-γ and IL-17a during sepsis compared to sham surgery, changes not seen in non-MAIT T cells. MAIT cells of patients at sepsis presentation were significantly reduced in frequency compared to healthy donors, and were more activated, with decreased IFN-γ production, compared to both healthy donors and paired 90-day samples. Our data suggest that MAIT cells are highly activated and become dysfunctional during clinical sepsis, and contribute to tissue-specific cytokine responses that are protective against mortality during experimental sepsis.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/fisiologia , Sepse/imunologia , Animais , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade Inata , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sepse/metabolismo
12.
Open Forum Infect Dis ; 7(5): ofaa136, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32462045

RESUMO

Cholera remains a significant public health problem worldwide. In settings of declining incidence, serosurveillance may be used to augment clinical surveillance. We utilized dried blood spot sampling and cholera-specific antibody testing to examine the serologic profiles of vaccinated and unvaccinated children in southern Vietnam, where cholera was recently eliminated.

13.
Inflamm Bowel Dis ; 26(9): 1353-1367, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32385500

RESUMO

BACKGROUND: The mucus gel layer (MGL) lining the colon is integral to exclusion of bacteria and maintaining intestinal homeostasis in health and disease. Some MGL defects allowing bacteria to directly contact the colonic surface are commonly observed in ulcerative colitis (UC). The major macromolecular component of the colonic MGL is the secreted gel-forming mucin MUC2, whose expression is essential for homeostasis in health. In UC, another gel-forming mucin, MUC5AC, is induced. In mice, Muc5ac is protective during intestinal helminth infection. Here we tested the expression and functional role of MUC5AC/Muc5ac in UC biopsies and murine colitis. METHODS: We measured MUC5AC/Muc5ac expression in UC biopsies and in dextran sulfate sodium (DSS) colitis. We performed DSS colitis in mice deficient in Muc5ac (Muc5ac-/-) to model the potential functional role of Muc5ac in colitis. To assess MGL integrity, we quantified bacterial-epithelial interaction and translocation to mesenteric lymph nodes. Antibiotic treatment and 16S rRNA gene sequencing were performed to directly investigate the role of bacteria in murine colitis. RESULTS: Colonic MUC5AC/Muc5ac mRNA expression increased significantly in active UC and murine colitis. Muc5ac-/- mice experienced worsened injury and inflammation in DSS colitis compared with control mice. This result was associated with increased bacterial-epithelial contact and translocation to the mesenteric lymph nodes. However, no change in microbial abundance or community composition was noted. Antibiotic treatment normalized colitis severity in Muc5ac-/- mice to that of antibiotic-treated control mice. CONCLUSIONS: MUC5AC/Muc5ac induction in the acutely inflamed colon controls injury by reducing bacterial breach of the MGL.


Assuntos
Colite Ulcerativa/genética , Colite/genética , Colo/metabolismo , Mucosa Intestinal/metabolismo , Mucina-5AC/metabolismo , Animais , Bactérias/genética , Colite/induzido quimicamente , Colite/microbiologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Colo/microbiologia , Sulfato de Dextrana , Modelos Animais de Doenças , Homeostase , Humanos , Mucosa Intestinal/microbiologia , Camundongos , Fatores de Proteção , RNA Ribossômico 16S
14.
J Exp Med ; 214(6): 1737-1752, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28487310

RESUMO

MicroRNA (miRNA)-mediated RNA interference regulates many immune processes, but how miRNA circuits orchestrate aberrant intestinal inflammation during inflammatory bowel disease (IBD) is poorly defined. Here, we report that miR-223 limits intestinal inflammation by constraining the nlrp3 inflammasome. miR-223 was increased in intestinal biopsies from patients with active IBD and in preclinical models of intestinal inflammation. miR-223-/y mice presented with exacerbated myeloid-driven experimental colitis with heightened clinical, histopathological, and cytokine readouts. Mechanistically, enhanced NLRP3 inflammasome expression with elevated IL-1ß was a predominant feature during the initiation of colitis with miR-223 deficiency. Depletion of CCR2+ inflammatory monocytes and pharmacologic blockade of IL-1ß or NLRP3 abrogated this phenotype. Generation of a novel mouse line, with deletion of the miR-223 binding site in the NLRP3 3' untranslated region, phenocopied the characteristics of miR-223-/y mice. Finally, nanoparticle-mediated overexpression of miR-223 attenuated experimental colitis, NLRP3 levels, and IL-1ß release. Collectively, our data reveal a previously unappreciated role for miR-223 in regulating the innate immune response during intestinal inflammation.


Assuntos
Inflamassomos/metabolismo , Inflamação/genética , Intestinos/patologia , MicroRNAs/metabolismo , Células Mieloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Adulto , Animais , Anticorpos/metabolismo , Sequência de Bases , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana , Suscetibilidade a Doenças , Hematopoese , Humanos , Inflamação/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Monócitos/metabolismo , Nanopartículas/química , Neutrófilos/metabolismo , Receptores CCR2/metabolismo
15.
PLoS Genet ; 11(10): e1005562, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26465937

RESUMO

Sporulation is an ancient developmental process that involves the formation of a highly resistant endospore within a larger mother cell. In the model organism Bacillus subtilis, sporulation-specific sigma factors activate compartment-specific transcriptional programs that drive spore morphogenesis. σG activity in the forespore depends on the formation of a secretion complex, known as the "feeding tube," that bridges the mother cell and forespore and maintains forespore integrity. Even though these channel components are conserved in all spore formers, recent studies in the major nosocomial pathogen Clostridium difficile suggested that these components are dispensable for σG activity. In this study, we investigated the requirements of the SpoIIQ and SpoIIIA proteins during C. difficile sporulation. C. difficile spoIIQ, spoIIIA, and spoIIIAH mutants exhibited defects in engulfment, tethering of coat to the forespore, and heat-resistant spore formation, even though they activate σG at wildtype levels. Although the spoIIQ, spoIIIA, and spoIIIAH mutants were defective in engulfment, metabolic labeling studies revealed that they nevertheless actively transformed the peptidoglycan at the leading edge of engulfment. In vitro pull-down assays further demonstrated that C. difficile SpoIIQ directly interacts with SpoIIIAH. Interestingly, mutation of the conserved Walker A ATP binding motif, but not the Walker B ATP hydrolysis motif, disrupted SpoIIIAA function during C. difficile spore formation. This finding contrasts with B. subtilis, which requires both Walker A and B motifs for SpoIIIAA function. Taken together, our findings suggest that inhibiting SpoIIQ, SpoIIIAA, or SpoIIIAH function could prevent the formation of infectious C. difficile spores and thus disease transmission.


Assuntos
Proteínas de Bactérias/genética , Clostridioides difficile/genética , Enterocolite Pseudomembranosa/genética , Fator sigma/genética , Esporos Bacterianos/genética , Trifosfato de Adenosina/genética , Motivos de Aminoácidos/genética , Diferenciação Celular/genética , Parede Celular/genética , Clostridioides difficile/patogenicidade , Enterocolite Pseudomembranosa/microbiologia , Mutação , Ligação Proteica
16.
PLoS Pathog ; 11(10): e1005239, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26496694

RESUMO

Clostridium difficile is a Gram-positive spore-forming pathogen and a leading cause of nosocomial diarrhea. C. difficile infections are transmitted when ingested spores germinate in the gastrointestinal tract and transform into vegetative cells. Germination begins when the germinant receptor CspC detects bile salts in the gut. CspC is a subtilisin-like serine pseudoprotease that activates the related CspB serine protease through an unknown mechanism. Activated CspB cleaves the pro-SleC zymogen, which allows the activated SleC cortex hydrolase to degrade the protective cortex layer. While these regulators are essential for C. difficile spores to outgrow and form toxin-secreting vegetative cells, the mechanisms controlling their function have only been partially characterized. In this study, we identify the lipoprotein GerS as a novel regulator of C. difficile spore germination using targeted mutagenesis. A gerS mutant has a severe germination defect and fails to degrade cortex even though it processes SleC at wildtype levels. Using complementation analyses, we demonstrate that GerS secretion, but not lipidation, is necessary for GerS to activate SleC. Importantly, loss of GerS attenuates the virulence of C. difficile in a hamster model of infection. Since GerS appears to be conserved exclusively in related Peptostreptococcaeace family members, our results contribute to a growing body of work indicating that C. difficile has evolved distinct mechanisms for controlling the exit from dormancy relative to B. subtilis and other spore-forming organisms.


Assuntos
Proteínas de Bactérias/fisiologia , Clostridioides difficile/fisiologia , Lipoproteínas/fisiologia , Animais , Proteínas de Transporte/fisiologia , Cricetinae , Esporos Bacterianos/fisiologia
17.
Infect Immun ; 83(10): 3902-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195552

RESUMO

Zinc is an essential trace metal required for numerous cellular processes in all forms of life. In order to maintain zinc homeostasis, bacteria have developed several transport systems to regulate its uptake. In this study, we investigated zinc transport systems in the enteric pathogen Vibrio cholerae, the causative agent of cholera. Bioinformatic analysis predicts that two gene clusters, VC2081 to VC2083 (annotated as zinc utilization genes znuABC) and VC2551 to VC2555 (annotated as zinc-regulated genes zrgABCDE), are regulated by the putative zinc uptake regulator Zur. Using promoter reporter and biochemical assays, we confirmed that Zur represses znuABC and zrgABCDE promoters in a Zn(2+)-dependent manner. Under Zn(2+)-limiting conditions, we found that mutations in either the znuABC or zrgABCDE gene cluster affect bacterial growth, with znuABC mutants displaying a more severe growth defect, suggesting that both ZnuABC and ZrgABCDE are involved in Zn(2+) uptake and that ZnuABC plays the predominant role. Furthermore, we reveal that ZnuABC and ZrgABCDE are important for V. cholerae colonization in both infant and adult mouse models, particularly in the presence of other intestinal microbiota. Collectively, our studies indicate that these two zinc transporter systems play vital roles in maintaining zinc homeostasis during V. cholerae growth and pathogenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Microbioma Gastrointestinal , Vibrio cholerae/metabolismo , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Família Multigênica , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA